Solutions: Homework 2

Nandagopal Ramachandran

October 18, 2019

Problem 1. Let (X, d) be a complete metric space and $Y \subset X$ is closed. Show that (Y, d) is a complete metric space.

Proof. Let $\left\{F_{n}\right\}$ be a sequence of non-empty closed sets in Y with diam $F_{n} \rightarrow 0$. Since Y is closed in X, the F_{n} 's are also closed in X. Then, by Cantor's theorem, the completeness of X implies that $\cap_{n=1}^{\infty} F_{n}$ consists of a single point. Since this holds for any such sequence in Y, Cantor's theorem implies that (Y, d) is complete.

Problem 2. Show that $\operatorname{diam} A=\operatorname{diam} \bar{A}$.
Proof. Since $\{d(x, y): x$ and y in $A\} \subset\{d(x, y): x$ and y in $\bar{A}\}$, we have diam $A \leq \operatorname{diam}$ \bar{A}. We will now show that for all $\epsilon>0$, there exists $x, y \in A$ such that $d(x, y)>\operatorname{diam} \bar{A}-\epsilon$. This would show that $\operatorname{diam} A \geq \operatorname{diam} \bar{A}$, which completes the proof. Choose $x_{0}, y_{0} \in \bar{A}$ such that $d\left(x_{0}, y_{0}\right)>\operatorname{diam} \bar{A}-\epsilon / 2$. Since $x_{0}, y_{0} \in \bar{A}$, we can find $x, y \in A$ such that $d\left(x, x_{0}\right)<\epsilon / 4$ and $d\left(y, y_{0}\right)<\epsilon / 4$. Then, using the triangle inequality, we have $d\left(x, x_{0}\right)+$ $d(x, y)+d\left(y, y_{0}\right) \geq d\left(x_{0}, y_{0}\right)>\operatorname{diam} \bar{A}-\epsilon / 2$. So $d(x, y)>\operatorname{diam} \bar{A}-\epsilon / 2-d\left(x, x_{0}\right)-d\left(y, y_{0}\right)>$ $\operatorname{diam} \bar{A}-\epsilon / 2-\epsilon / 4-\epsilon / 4=\operatorname{diam} \bar{A}-\epsilon$.

Problem 3. Suppose $\left\{x_{n}\right\}$ is a Cauchy sequence and $\left\{x_{n_{k}}\right\}$ is a subsequence which is convergent. Show that $\left\{x_{n}\right\}$ must be convergent.

Proof. Let $x_{n_{k}} \rightarrow x$ in (X, d). Let $\epsilon>0$ be arbitrary. Choose $N \in \mathbb{N}$ such that $d\left(x_{n}, x_{m}\right)<$ $\epsilon / 2 \forall n, m \geq N$. Choose $n_{k} \geq N$ such that $d\left(x_{n_{k}}, x\right)<\epsilon / 2$. Then $d\left(x_{n}, x\right) \leq d\left(x_{n}, x_{n_{k}}\right)+$ $d\left(x_{n_{k}}, x\right)<\epsilon / 2+\epsilon / 2=\epsilon$. So $d\left(x_{n}, x\right)<\epsilon \forall n \geq N$. This implies that $x_{n} \rightarrow x$ in X.

Problem 4. Let $p=\left(p_{1}, \ldots, p_{n}\right)$ and $q=\left(q_{1}, \ldots, q_{n}\right)$ be points in \mathbb{R}^{n} with $p_{k}<q_{k}$ for each k. Let $R=\left[p_{1}, q_{1}\right] \times \ldots \times\left[p_{n}, q_{n}\right]$ and show that

$$
\operatorname{diam} R=d(p, q)=\left[\sum_{k=1}^{n}\left(q_{k}-p_{k}\right)^{2}\right]^{\frac{1}{2}}
$$

Proof. Let $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right)$ be two points in R. Then $d(x, y)=\left[\sum_{k=1}^{n}\left(x_{k}-\right.\right.$ $\left.\left.y_{k}\right)^{2}\right]^{\frac{1}{2}}$. Since $x_{k}, y_{k} \in\left[p_{k}, q_{k}\right] \forall k,\left|x_{k}-y_{k}\right| \leq q_{k}-p_{k}$, hence $\left(x_{k}-y_{k}\right)^{2} \leq\left(q_{k}-p_{k}\right)^{2} \forall k$. Adding over all k, we get $d(x, y) \leq d(p, q) \forall x, y \in R$. So $\operatorname{diam} R \leq d(p, q)$. Since $p, q \in R$, $\operatorname{diam} R \geq d(p, q)$. So $\operatorname{diam} R=d(p, q)$.

Problem 5. Let $F=\left[a_{1}, b_{1}\right] \times \ldots \times\left[a_{n}, b_{n}\right] \subset \mathbb{R}^{n}$ and let $\epsilon>0$; use Problem 4 to show that there are rectangles R_{1}, \ldots, R_{m} such that $F=\cup_{k=1}^{m} R_{k}$ and diam $R_{k}<\epsilon$ for each k. If $x_{k} \in R_{k}$ then it follows that $R_{k} \subset B\left(x_{k} ; \epsilon\right)$.

Proof. For all $k=1, \ldots, n$, choose a positive number $r_{k}<\epsilon / \sqrt{n}$ such that $\frac{b_{k}-a_{k}}{r_{k}}$ is a natural number. Let $S_{k}=\left\{\left[a_{k}+j r_{k}, a_{k}+(j+1) r_{k}\right]: j=0, \ldots, \frac{b_{k}-a_{k}}{r_{k}}-1\right\}$ for $k=1, \ldots, n$. Let R_{1}, \ldots, R_{m} be all the rectangles of the form $A_{1} \times \ldots \times A_{n}$ with $A_{k} \in S_{k} \forall k=1, \ldots, n$. Then, by Problem 4, $\operatorname{diam} R_{j}=\left(\sum_{k=1}^{n} r_{k}^{2}\right)^{\frac{1}{2}}<\left(\sum_{k=1}^{n}(\epsilon / \sqrt{n})^{2}\right)^{\frac{1}{2}}=\epsilon$. Also, clearly $F=\cup_{k=1}^{m} R_{k}$. If $x_{k} \in R_{k}$ and $x \in R_{k}$, then $d\left(x_{k}, x\right) \leq \operatorname{diam} R_{k}<\epsilon \Longrightarrow R_{k} \subset B\left(x_{k} ; \epsilon\right)$.

